II B.Tech - II Semester – Regular / Supplementary Examinations MAY - 2024

FORMAL LANGUAGES AND AUTOMATA THEORY (Common for CSE, AIML, DS)

Duration: 3 hours

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	CO	Max. Marks				
1	a)	How does Automata Theory contribute to	L2	CO1	7 M				
	advancements in technology and software								
		development?							
	b)	What is Automata? Explain classification of	L2	CO1	7 M				
		Automata.							
	OR								
2	a)	Explain the design of a finite state machine with	L4	CO4	7 M				
		an example.							
	b)	Design DFA for the language	L3	CO2	7 M				
		L={aaa,aaaa,baaa,aaaaa,abaaa,baaaa,bbaaa,							
	-		-						

Max. Marks: 70

		UNIT-II			
3	a)	Convert the following Finite automata to regular	L3	CO2	7 M
		expression.			
		Start 0 1 $0, 1$ A B C $0, 1$			
	b)	Construct a NFA equivalent to the regular	L3	CO2	7 M
		expression $10(0+11)0*1$.			
		OR			
4	a)	Write in brief about the algebraic rules for	L2	CO2	7 M
		regular expressions.			
	b)	Discuss in brief about applications of pumping	L2	CO2	7 M
		lemma for regular language.			
	1	UNIT-III	I	1	
5	a)	Simplify the following CFG and Convert it into CNF. S -> AaB aaB A -> ϵ B -> bbA ϵ	L3	CO2	7 M
	b)	Simplify the following CFG with no useless symbols. $S \rightarrow AB \mid DA$ $B \rightarrow BD \mid AB$ $D \rightarrow aB \mid b$ $A \rightarrow a$	L3	CO2	7 M

			0	R					
6	a)	Write in detail	the Chomsky l	nierarchy	of formal	L2	CO2	7 M	
		languages.							
	b)	Check whether	the language L	$a = \{a^n b^n a$	$c^{n} n \ge 0$ is	L3	CO2	7 M	
		context free or	not.						
UNIT-IV									
7	a) Design PDA that accepts Language						CO2	7 M	
		$L = \{wcw^R w i$	$n (0+1)^*$, by e	empty sta	ack. Where				
	w^{R} is the reverse of w.								
	b)	Construct PDA	A equivalent	to the	following	L4	CO4	7 M	
	grammar.								
		S -> aAA							
		$A \rightarrow aS \mid bS \mid a$							
			O	R					
8	a)	Define Push D	own Automata	. Explai	n the basic	L2	CO2	7 M	
	structure of PDA with a neat graphical								
		representation.							
	b) Construct a PDA that accepts $L = \{0^n 1^n n \ge 0\}$.						CO2	7 M	
			UNI	Г-V					
9	a)	Design a Turing Machine to accept $L = \{0^{n}1^{n}0^{n} \mid n \ge 1\}.$				L3	CO3	7 M	
	b) Explain about Universal Turing Machine.					L2	CO3	7 M	
			0	R					
10	a) Let A and B be lists of three strings each					L3	CO3	7 M	
			List A	List	B				
		i	Wi	Xj					
		1	1	11					
		2	10111	10					
		3 Chaoly whathan	10 this DCD has a						
	1-)	Check whether this PCP has a solution or not.					<u> </u>	7 1 4	
	b) What is Halting Problem of Turing Machine? Is						CO3	7 M	
	it decidable or not? Explain.								